Fundamentals of SIP

Spring VoiceCon 2007, Orlando
David A. Bryan
SIPeerior Technologies, Inc.
www.SIPeerior.com
Outline

• Background on VoIP
• What is SIP?
• SIP Components
• SIP Messages
• Locating Users and Establishing Sessions
• Routing in SIP
• Media with SIP
• SIMPLE
• NATs, Firewalls, and SIP
• P2PSIP
• References
Some (brief!) Background on VoIP

- Packet Switched, not Circuit switched
 - There is no dedicated path that traffic follows
 - Segmented into IP packets, sent to target, particular path not specified
- Original telephone network was circuit switched (think of the operator w/wires)
 - SS7, defined by the ITU (International Telecommunications Union)
VoIP Protocols

• H.323
 – ITU defined VoIP protocol
 • ITU is very formal, government oriented
 – More “telephony” in nature than Internet
• SIP
 – IETF (Internet Engineering Task Force) defined protocol for general multimedia session establishment
 • IETF is much less formal, individual oriented
 – More “Internet” in nature than telephony
H.323 vs. SIP

<table>
<thead>
<tr>
<th>Feature</th>
<th>H.323</th>
<th>SIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding</td>
<td>Binary</td>
<td>Text</td>
</tr>
<tr>
<td>Control</td>
<td>Centralized server</td>
<td>Endpoints (using proxy)</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Most in central server; core</td>
<td>Most in the endpoints; edge</td>
</tr>
<tr>
<td>Modularity</td>
<td>Monolithic (all in one server)</td>
<td>Can be multiple servers</td>
</tr>
<tr>
<td>Defined by</td>
<td>ITU</td>
<td>IETF</td>
</tr>
<tr>
<td>Media</td>
<td>RTP</td>
<td>RTP</td>
</tr>
</tbody>
</table>
SIP

- **Session Initiation Protocol**
- Defined (mostly) in IETF RFCs 3261-3264
 - Many other drafts extend SIP and add new features
- Text based, very similar to HTTP
- Establishes a media session between endpoints
- Allows mobility – locate users using a SIP URI (sip:dbryan@sipeerior.com)
 - URI is not tied to a particular host
- Usually runs on port 5060, using UDP or TCP
- Allows for IPv4 and IPv6 (Next generation mobile phones use SIP over TCP/IPv6)
SIP

• Offers Event management (Subscribe/Notify) for presence etc.
• Extended by SIMPLE to support IM (Instant Messaging)
• Designed to allow easy interoperation with other Internet features such as WWW and email
Why is SIP Important?

• The promise of interoperable equipment
 – A Nortel phone talking to a Cisco proxy to reach another user with an Avaya phone

• Designed for the future
 – Any media (voice, video, text, ???)
 – Internet/endpoint centric design
 – Easily extensible

• Has become the dominant VoIP protocol
Major Components of SIP

• SIP systems specify components *logically*

• There are several components specified
 – *UA* (User-Agent, Endpoint) – the phone itself
 – *Registrar* – keeps track of where the user is within a system
 – *Redirect Server* – used to inform devices when they need to contact different locations
 – *Proxy Server* – used to relay messages back and forth within the system

• In practice, several *logical* functions may actually reside in the same *physical* server/program
User Agents

• A User Agent (also called a UA, Phone, or Endpoint) represents a user of a SIP system
 – A particular user may have more than one UA
 – Can be hard device (fixed or mobile) or a “soft client” – an application running on a PC
Registration

“I’m Alice, and I’ll be using a phone at 192.168.0.1 today!”

When I get a call for Alice, I’ll know to contact her at 192.168.0.1!
Redirection

“I need to call Bob!”

“Call here for Bob from Alice”

“Try him at bob-isp.com”

sip.bob-office.com

sip.SIPeerior.com

“Call here for Bob from Alice”

sip.bob-isp.com

“Call for you from Alice!”
Bob is over at bob-isp.com. I'll proxy the call over there!

“I need to call Bob!”

“Call here for Bob from Alice”

“Call for you from Alice!”

sip.bob-office.com

tsip.bob-isp.com
Mapping to Physical Entities

• SIP Proxy
 – Often what is sold as a proxy is really a Proxy/Registrar/Redirect server

• Many things are really built on UAs
 – Session Border Controllers are usually 2 UAs connected
 • B2BUA or “Back-to-Back User Agent”
 – Voice mail servers
 – Interactive Voice Response systems

• Softswitch often incorporates all of this
Gateways

• How about connecting to the outside world?
 – If you want to talk to another SIP user, your proxy may know how to contact that proxy directly
 – To call out (or to have calls come in) you use a gateway. It connects to one or more regular phone lines to let you receive and place calls to old fashioned “Plain Old Telephone Service”, or POTS
Gateway example

SIP/IP network

SIP Server

Gateway

POTS network
SIP Messages

- SIP messages fall into two types – requests and responses
 - Requests include a method telling what it is they are doing.
 - REGISTER, to register where to contact a user
 - INVITE, to start a new session (call)
 - BYE, to end a session that is established
 - CANCEL, to end a session that is still being set up (no final response yet)
 - ACK, part of the triple handshake
 - Many others
SIP Messages

• Responses are numeric, much like HTTP
 – 1xx Provisional – 100 Trying, 180 Ringing
 – 2xx Successful – 200 OK
 – 3xx Redirection – 301 Moved Permanently, 302 Moved Temporarily
 – 4xx Failure – 404 Not Found, 410 Gone, 403 Forbidden
 – 5xx Server Failure – 503 Service Unavailable
 – 6xx Global Failure – 600 Busy Everywhere
Registration Call Flow

REGISTER

401 Unauthorized

REGISTER

200 OK
Basic Call Flow

INVITE
100 Trying
180 Ringing
200 OK
ACK
BYE
200 OK

INVITE
180 Ringing
200 OK
ACK
BYE
200 OK

Bi-directional Media between endpoints
No-answer Call Flow

INVITE
100 Trying
180 Ringing
CANCEL
200 OK
487 Request Terminated
ACK

INVITE
180 Ringing
CANCEL
200 OK
487 Request Terminated
ACK
AORs and Contacts

• In SIP, a registrar maps between an AoR and a contact
 – AoR: Address of Record
 • Permanent, something on your business card
 • Not tied to a specific host
 • sip:dbryan@SIPeerior.com
 – Contact
 • Ephemeral, tied to a host
 • sip:dbryan@ua32.sipeerior.com
 – Being able to change AoR→Contact mapping allows mobility
Registration, revisited

“I’m Alice (alice@phonecompany.com), and I’ll be using a phone at 192.168.0.1 today!”

AoR → Contact Map:
alice@phonecompany.com → alice@192.168.0.1
Registration, revisited

“Lunch time! Mobile Time! (alice@phonecompany.com) will be using 10.0.1.1 now!”

AoR → Contact Map:
alice@phonecompany.com → alice@10.0.1.1
INVITE message

INVITE sip:bob@bigcompany.com SIP/2.0
Via: SIP/2.0/TCP aliceua.phonecompany.com:5060
From: Alice <sip:alice@phonecompany.com>;tag=ss95cbav
To: Bob <sip:bob@bigcompany.com>
Call-ID: 3848276298220188511@aliceua.phonecompany.com
CSeq: 1 INVITE
Max-Forwards: 10
Contact: <sip:alice@aliceua.phonecompany.com;transport=tcp>

...snip!...

(Alice is going to call Bob...)
INVITE message

INVITE sip:bob@bigcompany.com SIP/2.0
 SIP request, method is INVITE, target is an AoR (for Bob)
Via: SIP/2.0/TCP aliceua.phonecompany.com:5060
 Via header tracks where it has been (more on this later)
From: Alice <sip:alice@phonecompany.com>; tag=ss95cbav
 Message is from Alice, and this is the SIP URL for Alice. The tag is unique
to this call and selected by Alice’s UA
To: Bob <sip:bob@bigcompany.com>
 Alice is trying to contact Bob at his SIP URL
Call-ID: 3848276298220188511@aliceua.phonecompany.com
 Call-ID is a unique ID to track this particular call (selected by Alice’s UA)
CSeq: 1 INVITE
 Used to track which responses go with which messages. Responses to
this invite will also have a CSeq of 1 INVITE
Max-Forwards: 10
 Used in routing (more on this later)
Contact: <sip:alice@aliceua.phonecompany.com;transport=tcp>
 How to contact Alice directly. Notice this is a contact (has a host)
...snip...
Calls and Dialogs

- A *call* is an informal term for communication between two devices
- A *dialog* is a more specific term, which defines a relationship between two UAs for a duration
 - In many ways, this is what most people would think of as a call
 - Defined by Call-ID, To tag, and From tag
 - Sender selects Call-ID, and From tag
 - Receiver selects To tag
Transaction

• A transaction defines a particular operation that is carried out between the endpoints
 – Example: (INVITE) Set up the call, (BYE) end the call
• Includes all responses (including the ACK)
• May be several transactions within a dialog
• Each transaction uses a new CSeq
 – Chosen by the initiator of the transaction
 – Each side must increase the CSeq for each new transaction they initiate – no specified starting point
 – But since some transactions are initiated by each side, within a call it might look out of order
Dialogs and Transactions

SIP Server

Transaction 1
Dialog/Call
Transaction 2

INVITE
100 Trying
180 Ringing
200 OK
ACK
BYE
200 OK

INVITE
180 Ringing
200 OK
ACK
BYE
200 OK

Bi-directional Media between endpoints
Routing

• Each entity forwards message along path to reach destination
 – Places next destination into Request-URI (top line)
 – Adds themselves as another Via
 – Max-Forwards is decremented to prevent loops and limit the length of path
 • if it reaches 0, the message isn’t forwarded again
INVITE message

INVITE sip:bob@bigcompany.com SIP/2.0
Via: SIP/2.0/TCP aliceua.phonecompany.com:5060
From: Alice <sip:alice@phonecompany.com>;tag=ss95cbav
To: Bob <sip:bob@bigcompany.com>
Call-ID: 3848276298220188511@aliceua.phonecompany.com
CSeq: 1 INVITE
Max-Forwards: 10
Contact: <sip:alice@aliceua.phonecompany.com;transport=tcp>

…snip!...

Let’s see what happens as this message passes through the big company proxy on the way to Bob…
INVITE message

INVITE sip:bob@bobua.bigcompany.com SIP/2.0
Via: SIP/2.0/TCP proxy.bigcompany.com:5060
Via: SIP/2.0/TCP aliceua.phonecompany.com:5060
From: Alice <sip:alice@phonecompany.com>;tag=ss95cbav
To: Bob <sip:bob@bigcompany.com>
Call-ID: 3848276298220188511@aliceua.phonecompany.com
CSeq: 1 INVITE
Record-Route: <sip:proxy.bigcompany.com;lr>
Max-Forwards: 9
Contact: <sip:alice@aliceua.phonecompany.com;transport=tcp>

…snip!

Notice the new URI, added VIA, and decremented Max-Forwards. This message is forwarded to Bob’s UA.

But one more here. What is record route?
Record Route

• Once a UA has the address of the other UA in the call, they can communicate directly if they wish

• Record route is a way for a proxy to request “keep me in the loop”
 – Ensures that future transactions include this proxy, rather than going directly to the other UA
Routing Responses

• When Bob’s UA responds, it “unrolls” the Via headers to decide where to route the responses
• The response traces the path back, sending the response to the Via address of the entity that sent the message (responding!)
• That entity removes itself from the Via and passes the message along, unrolling until it reaches the sender
Forking

• While somewhat complicated, many features require “forking”
 – Send a message to more than one entity
 Need to track (and manage both sides)
• Parallel forking (send to more than one at a time)
 • Ring both desk and mobile at once, cancel the call to whichever fails to pickup
• Can also use redirection (sequential)
 • Ring desk phone, then try mobile if no answer
SIP, SDP, and RTP

• SIP is only a part of the picture
• SIP is used to establish the multimedia session
• SIP messages don’t describe the type of media themselves
 – Embed another protocol called SDP
• Yet another protocol, RTP, is used to actually stream the media between the devices
Codecs (encoding)

• The media that flows using RTP is encoded using a codec

• Codec is about how the audio has been converted to packets
 – Example: g.711, g.729, GIPS
 – In general, higher quality = more network bandwidth
 – Codec is described in SDP
SDP/RTP

• Both of these are older IETF protocols used by SIP
 – IETF tries to promote reuse whenever possible

• Session Description Protocol
 – Used by SIP to describe the media format, encoding, destination, etc.
 – Included in SIP message as a payload

• Real-time Transport Protocol
 – Used to transport the encoded media across the wire
The Protocols in a SIP Call

UA SIP/SDP SIP Server SIP/SDP UA

Media (RTP)
INVITE message

INVITE sip:bob@bigcompany.com SIP/2.0
Via: SIP/2.0/TCP aliceua.phonecompany.com:5060
From: Alice <sip:alice@phonecompany.com>; tag=ss95cbav
To: Bob <sip:bob@bigcompany.com>
Call-ID: 3848276298220188511@alicaua.phonecompany.com
CSeq: 1 INVITE
Contact: <sip:alice@aliceua.phonecompany.com;transport=tcp>
Content-Type: application/sdp
Content-Length: 134

v=0
o=SIPeerior-UA 10010 605 IN IP4 aliceua.phonecompany.com
s=SIP Call
c=IN IP4 192.0.1.1
t=0 0
m=audio 49172 RTP/AVP 0 8 16
The content of the message is SDP – to describe the media of the call. We have 134 bytes of SDP

v=0

v is the SDP version number -- 0

o=SIPeerior-UA 10010 605 IN IP4 aliceua.phonecompany.com

o is a description of the UA and a session ID

s=SIP Call

s is an string to encode a name for this session

c=IN IP4 192.0.1.1

c tells the other side what address to send the media to

t=0 0

t indicates start and end times. 0 and 0 don’t specify times in advance

m=audio 49172 RTP/AVP 0 8 16

m describes the media. We are listening for audio of type RTP/AVP on port 49172
Offer/Answer

- Different UAs may support different codecs
- Calling UA lists what it supports and is willing to use in the INVITE message SDP
- Called UA responds with the subset of that it is willing to use in the response SDP (200 OK)
- If nothing in common, can’t communicate and call is rejected
- Mechanisms exist to change this mid call (for example, switching from audio to video)
Instant Message and Presence

- SIP has a set of extensions called SIMPLE
 - **SIMPLE**: SIP for Instant Messaging (IM) and Presence Leveraging Extensions
 - Allows sending text messages between devices
 - Can cleanly transition to a voice chat, since the session is all SIP
 - Presence (ability to see “status” of other user) is also supported (and persistent on server)
 - Idle, Offline, Available, Busy, Offline till Monday…
Instant Message and Presence

• MESSAGE method used to send text messages
• SUBSCRIBE to express an interest, “subscribe” to someone’s status
• PUBLISH to change your status on the presence server
• NOTIFY is sent from server to those who have subscribed
Extending SIP

• SIMPLE isn’t the only extension
• SIP was designed from the beginning to be highly extensible
• Can add new methods, new responses, headers
• Several groups at IETF determine what is really an accepted “standard” extension
 – SIP, SIPPING, SIMPLE working groups
• Many vendors add non-interoperable “extensions” to SIP
 – These may not work across different vendor platforms
NAT/FW Traversal

• SIP has traditionally had some trouble getting through firewalls (FWs) and **Network Address Translators (NATs)**

• Two major causes
 – NATs use “private” IP addresses, not routable from the outside
 • SIP embeds these, outside entity has no way to respond
 – SIP and RTP (the media) are on different “ports”
 • Each requires a specific forwarding through the firewall to work and must be opened separately
Firewalls and Media

A UA Contacts another UA (or a proxy), sending SIP messages.

The process of sending the message (on most NATs/FWs) creates a mapping that allows responses to reach the sender.
Media (RTP) is on a different port (different opening in the FW) than SIP.

It is possible that at the time the media is sent, it is rejected by the firewall.
NAT/FW Traversal

• Several Solutions
 – IETF efforts
 • STUN, TURN and ICE
 • Query outside servers to find out “public” address
 • Can use media relays to help get media between two hosts behind firewalls
 – Session Border Controllers (SBCs)
 • Sit near the firewall/NAT, rewrite the internals of the packets, work with firewall to open ports
Peer-to-Peer (P2P) SIP

• Growing but very new area
• Basic idea – reduce or completely eliminate the central servers (proxy/softswitch)
• Essentially all functionality is moved to the UA
• IETF is looking at this, a few companies have (for now nonstandard) implementations
• Very cost effective for small enterprises
• Highly scalable, so also good for internet-wide deployments
In a Client/Server session, two nodes must use a central server to communicate.
P2P Session

In a Peer-to-Peer session, when two nodes communicate, a few other nodes, rather than a central server, help complete the call.
Open Source SIP projects

• Several good open source SIP projects
 – ReSIProcate / Repro
 • Highly compliant stack and proxy
 – VOCAL
 • Full SIP “softswitch” – includes proxy, softclient, voice mail, etc.
 – IPTel Sip Express Router
 • High performance Proxy. Less full featured than VOCAL, but faster and more robust
Some Good SIP Webpages

• Tech-Invite (www.tech-invite.com) is a great source for general SIP information with many beautiful color illustrations
• SIP Tutorial at iptel.org, (www.iptel.org/sip/siptutorial.pdf)
• SIP versus H.323, also at iptel.org, (www.iptel.org/info/trends/sip.html)
• ReSIPProcate open source stack and proxy project (www.sipfoundry.org)
• IETF information can be found at www.ietf.org and www.softarmor.com
• P2PSIP.org (www.p2psip.org) is the biggest community site for P2PSIP
Books on SIP

Acknowledge/Thanks

• Thanks to those who have worked on SIP over the years, presented SIP tutorials, or written SIP books!